LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **STATISTICS**

SECOND SEMESTER - APRIL 2015

ST 2504 - DISCRETE DISTRIBUTIONS

Date : 17/04/2015

Dept. No.

Max.: 100 Marks

Time : 01:00-04:00

SECTION –A

Answer all questions

(10 x 2 = 20 Marks)

- 1. Define the marginal distribution of X given the joint probability mass function.
- 2. Define E [X/Y = y].
- 3. Define discrete uniform distribution.
- 4. 10 coins are thrown simultaneously. Find the probability of getting atleast seven heads.
- 5. Under what conditions Poisson distribution is a limiting case of Binomial distribution.
- 6. In a book of 520 pages, 390 typo-graphical errors occur. Assuming Poisson law for the number of errors per page, find the probability that a random sample of 5 pages will contain no error.
- 7. Define Geometric distribution.
- 8. Under what conditions Negative Bionomial distribution is a limiting case of Poisson distribution.
- 9. Obtain mean of Hyper Geometric distribution.
- 10. Define Multinomial distribution.

SECTION-B

Answer any FIVE questions.

(5 x 8 = 40 marks)

11. The joint probability distribution of two random variables X and Y is given by

$$P(X = 0, Y = 1) = 1/3, P(X = 1, Y = -1) = 1/3 \text{ and } p(X=1,Y=1) = 1/3$$

find (i) marginal distributions of X and Y

(ii) p(X=1/Y=1)(iii) E[X](iv) E[X/Y=1]

- 12. Obtain recurrence relationship for Binomial distribution.
- 13. A car hire firm has two cars, which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 15. Calculate the proportion of days on which (i) neither car is used and (ii) the proportion of days on which some demand is refused.
- 14. Explain memoryless property of Geometric distribution.
- 15. Obtain MGF of trinomial distribution.
- 16. Let X_1 , X_2 be independent random variables each having geometric distribution, $q^k p$, $k=0,1,2,\ldots$ show that the conditional distribution of X_1 given X_1+X_2 is uniform.
- 17. In a Poisson frequency distribution, frequency corresponding to 3 successes is 2/3 times frequency corresponding to 4 successes. Find mean and standard deviation of the distribution.
- 18. Let X and Y be two random variables each taking three values -1,0 and 1 and having the joint probability distributions

X\Y	-1	0	1
-1	1/27	1/9	2/27
0	1/9	5/27	1/3
1	0	1/9	1/27

Find V(Y/X=-1).

SECTION-C

Answer any Two questions.

$(2 \times 20 = 40 \text{ marks})$

19. The joint probability distribution of X and Y is given by the following table.

X Y	1	3	9
2	1/8	1/24	1/12
4	1/4	1/4	0
6	1/8	1/24	1/12

- (i) Find marginal distribution of Y
- (ii) Find conditional distribution of Y/X = 2
- (iii) Find COV(X,Y)
- (iv) Are X and Y independent?
- 20. Derive the recurrence relation for the moments of Poisson distribution. Hence obtain the first four central moments.

- 21. (a) Obtain the density function of a Poisson distribution as a limiting case of Binomial distribution.
 - (b) Obtain MGF of Negative Binomial distribution and hence obtain its mean and variance.
- 22. (a) Explain Hyper- Geometric distribution.
 - (b) If X_1 and X_2 are independent Poisson variates with parameters λ_1 and λ_2 respectively, find the distribution of $X_1 = r$ given $X_1 + X_2 = n$.

\$\$\$\$\$\$